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The structure and development of the scalar wake produced by a single line source are
studied in decaying isotropic turbulence. The incompressible Navier–Stokes and the
passive-scalar transport equations are solved via direct numerical simulations (DNS).
The velocity and the scalar fields are generated by simulating Warhaft’s (1984)
experiment. The results for mean and r.m.s. scalar statistics are in good agreement
with those obtained from the experiment. The structure of the scalar wake is examined
first. At initial times, most of the contribution to the scalar variance is due to the
flapping of the wake around the centreline. Near the end of the turbulent convective
regime, the wake develops internal structure and the contribution of the flapping
component to the scalar variance becomes negligible. The influence of the source size
on the development of the scalar wake has been examined for source sizes ranging
from the Kolmogorov microscale to the integral scale. After an initial development
time, the half-widths of mean and scalar r.m.s. wakes grow at rates independent of the
source size. The mixing in the scalar wake is studied by analysing the evolution of the
terms in the transport equations for mean, scalar flux, variance, and scalar dissipation.
The DNS results are used to test two types of closures for the mean and the scalar
variance equations. For the time range simulated, the gradient diffusion model for
the scalar flux and the commonly used scalar dissipation model are not supported by
the DNS data. On the other hand, the model based on the unconditional probability
density function (PDF) method predicts the scalar flux reasonably well near the end
of the turbulent convective regime for the highest Reynolds number examined. The
scalar source size does not significantly influence the models’ predictions, although
it appears that the time-scale ratio of mechanical dissipation to scalar dissipation
approaches an asymptotic value earlier for larger source sizes.

1. Introduction
A better understanding of the diffusion of passive scalars in turbulent flows has im-

portant applications in engineering, atmospheric and oceanic sciences. Some examples
are improving the mixing efficiency in combustion devices, the dispersion of pollutants
in the atmosphere, and salinity and temperature fluctuations in the oceans. With the
current capabilities of computers, the DNS of practical flows is not feasible, and
measurements of these flows are extremely difficult (Givi 1994). Some features of the
mixing and dispersion rates of scalar contaminants in turbulent flows are likely to be
understood by studying the passive-scalar wake behind a line source in homogeneous
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turbulence. This problem is also of fundamental interest, being the first step toward
understanding more complicated aspects of the dynamics of turbulent mixing and
reaction. Theoretical studies were done as long as sixty years ago (Taylor 1935), but
the problem still remains unsolved from a fundamental point of view. One of the
difficulties in modelling the scalar wake is that the length scale of the scalar field is
different from that of the turbulence during the initial stages of the wake develop-
ment. This is also the reason for the failure of gradient-like models in simulating the
turbulent wake (Anand & Pope 1985).

In order to overcome this difficulty, more sophisticated models have been proposed.
The probability density function (PDF) models (Pope 1985; Anand & Pope 1985) and
the Lagrangian stochastic models based on two-point displacement (Durbin 1980;
extended by Sawford & Hunt 1986 and Thomson 1990) predict well the experimental
results for the mean statistics of the scalar wake and the normalized scalar variance
profiles. However, the time evolution of other statistics such as the scalar intensity (the
ratio of r.m.s. scalar to mean scalar) and the width of the r.m.s. scalar wake are still
not well predicted. The classical phenomenology can be used to describe the scalar
r.m.s. statistics (Thomson 1996), but it is limited to obtaining results in a number
of distinct regimes and not in the transition between these regimes. Simpler models
using shape parameters and assumptions about the similarity of the scalar field have
also been proposed for the scalar r.m.s. and the higher-order moments (Chatwin &
Sullivan 1990; Sawford & Sullivan 1995; Mole & Clark 1996). Although there are
models that address some of the issues related to the source size dependence of the
scalar wake (e.g. Sawford & Hunt 1986), they have not been tested for large source
sizes, primarily due to the lack of experimental results.

Experiments on the dispersion of a scalar field downstream of a line source were
carried out by Uberoi & Corrsin (1952), Townsend (1954), Warhaft (1984), and
Stapountzis et al.(1986) using a small temperature difference as a passive scalar.
Li & Bilger (1996) measured the reactive scalars in a chemically reactive plume
behind a line source from which they extracted results for the conserved scalar.
They also showed that these results are consistent with those measured in passive
thermal plumes. In order to generate various initial profiles of mean and fluctuating
temperature, experiments have been conducted using groups of heated wires (Warhaft
& Lumley 1978; Sreenivasan et al. 1980). Although the temperature generated by an
array of wires can be treated as a random initial temperature field, these results can
also be explained by using the superposition of multiple line sources (Warhaft 1984).
Important aspects of the first two moments of the passive scalar field have been
elucidated using the experimental data. However, higher-order statistics of the scalar
field are increasingly difficult to obtain experimentally, although significant steps have
been taken recently in improving the accuracy and resolution of the measurements
(Buch & Dahm 1996, 1998). There are also concerns about the homogeneity and
isotropy of the velocity field and the passiveness of the scalar field.

Since many of the important scalar statistics are difficult to obtain experimentally,
DNS has become an important tool in complementing experimental investigations
of turbulent mixing. Although there are severe limitations to the capability of DNS
in capturing the physics of the scalar mixing in high Reynolds number turbulence,
there are certain advantages in its implementation for simulations at moderate and
low Reynolds numbers (Givi 1989). DNS allows the researcher a degree of control
in isolating specific physical phenomena that are almost inaccessible in experiments.
The characteristics of the scalar small-scale structures, the behaviour of the scalar
spectra, and higher-order moments of the scalar field can thus be analysed in great
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detail (Kerr 1985; Ruetsch & Maxey 1991; Leonard & Hill 1991; Miller et al.
1995; Jaberi et al. 1996; Overholt & Pope 1996). Recent advances in supercomputer
capabilities and algorithms make it possible, by performing DNS, to simulate the
laboratory experiments on turbulent mixing processes. A successful confirmation of
the experimental results will lend confidence to future numerical results.

The main goals of the present paper are: (1) to examine the structure and develop-
ment of the scalar wake behind a line source in isotropic turbulence, (2) to study the
influence of the source size ranging from the Kolmogorov microscale to the integral
scale and (3) to assess the behaviour of the gradient-diffusion-type models and PDF
models. Several runs have been performed, including the simulation of the velocity
and scalar fields from Warhaft’s (1984) experiment.

This paper is organized as follows. Section 2 contains the governing equations and
the numerical methodology. Characteristics of the velocity field are presented in § 3.
The results pertaining to the scalar field are discussed in § 4. In § 4.1 the DNS results
for the scalar field statistics are compared to the experimental ones. Also in this
section, the structure of the scalar wake produced by a thin scalar source is discussed.
In § 4.2, the influence of the source size on the mean and r.m.s. scalar wake and on the
structure of the wake is examined. The mechanisms which contribute to the spreading
of the wake are studied in § 4.3 by analysing the variation of each term in the transport
equations for mean scalar, scalar flux, scalar variance and scalar dissipation. Also in
this section, two types of closures for the mean scalar and scalar variance equations
are assessed via numerical data. Summary and conclusions are stated in § 5.

2. Formulation and numerical methodology
2.1. Flow configuration and basic assumptions

Direct numerical simulations of the mixing of a passive scalar field produced by a
single line source in decaying isotropic turbulence were conducted, and the results
are compared with Warhaft’s (1984) experiment for a single line source (referred to
hereinafter as W84). In order to better understand the numerical approach, a brief
description of the W84 experiment is provided. In the first part of the experiment,
detailed measurements of the mean and variance of the thermal wake behind a
single line source in grid turbulence were performed (figure 1). The wire is placed
perpendicular to the mean velocity U, in the z-direction. The diameter d of the wire is
smaller than the Kolmogorov microscale in order to minimize its effect on the velocity
field. The excess temperature was small enough for the temperature to be considered
a passive scalar. The distance from the grid to the heated wire is x0 and the distance
from the heated wire to the measurement plane is x′. M is the mesh length of the
turbulence-generating grid. Numerical values for the experimental set-up with which
we compare our results are: U = 7 m s−1, M = 0.025 m, x0/M = 52, d = 0.025 mm
(≈ 0.07ηK) for measurements up to x′/M = 8.1 and d = 0.127 mm (≈ 0.36ηK) for
measurements beyond x′/M = 8.1, where ηK is the Kolmogorov microscale.

In our numerical simulations of the W84 experiment, we employ the Taylor transfor-
mation (Townsend 1954; Anand & Pope 1985; Stapountzis et al. 1986) approximating
the continuous line source from the experiment with an instantaneous plane source.
The experimental thermal wake statistics at x′ and y are similar to those at t and y for
the plane source, where t = x′/U. The approximation is valid as long as the turbulence
intensity 〈u2〉1/2/U is small and the mean axial gradients are small compared with
lateral gradients, conditions satisfied by the W84 experiment. Consistent with Taylor
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Figure 1. Typical experimental set-up for passive scalar measurements from
a single line source in grid turbulence.

transformation, the scalar field is initialized in DNS with non-zero values in a slab per-
pendicular to the y-axis and zero elsewhere. The resulting scalar field is homogeneous
in the x- and z-directions and inhomogeneous in the y-direction. The simulation is
stopped before the scalar wake reaches the boundaries of the computational domain.

2.2. Governing equations

The equations solved are the non-dimensionalized Navier–Stokes equations and the
transport equation for the passive scalar. The flow is assumed to be homogeneous,
isotropic and incompressible:

∂uj

∂xj
= 0, (2.1)

∂ui

∂t
+
∂(uiuj)

∂xj
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+
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∂xj∂xj
. (2.3)

The independent variables are the velocity ui, the pressure p and the passive-scalar
mass fraction Y . All the variables in the above equations are normalized using
reference length (L0) and velocity (u0) scales. The passive scalar is scaled such as
it takes values in the interval [0, 1]. The non-dimensional parameters in equations
(2.2) and (2.3) are the Reynolds number, Re0 = u0l0/ν, and the Schmidt number,
Sc = ν/D. The kinematic viscosity ν and the mass diffusivity D are assumed to be
constant, resulting in Sc = 0.72.

The computational domain is a cubic box with 1283 grid points. The reference
frame is moving with constant velocity equal to the mean velocity of the flow. In
this coordinate system the values of the mean velocities in all three directions are
zero. The governing equations are integrated using the Fourier spectral-collocation
method (Gottlieb & Orszag 1977; Givi & Madnia 1992; Givi 1994) with triply
periodic boundary conditions. Time advancement is provided by a second-order-
accurate Adams–Bashforth technique. Aliasing errors are controlled by removing the
energy from the wavenumbers with magnitude over

√
2N/3. Since the scalar field is

homogeneous in the directions x and z, all the averages involving the scalar mass
fractions are defined over these directions, unless otherwise stated.
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W84 DNS

Lref 0.0135 m 0.8147
tref 0.0882 s 1.797
uref 0.153 m s−1 0.4533

Table 1. Numerical values for the reference scales.

2.3. Initial conditions

The velocity field is initialized as a random solenoidal three-dimensional field with
zero mean and Gaussian energy spectrum. The parameters which control the velocity
field are the Reynolds number (Re0) and the initial location of the peak of the energy
spectrum (K0).

In order to relate the numerical results to the experimental ones, reference scales
are defined. The values of the Eulerian velocity integral scale (L = (u2

rms)
3/2/ε), r.m.s.

velocity fluctuations (urms) and eddy turnover time (τ = u2
rms/ε) at the location of the

heated wire are chosen as the reference scales used for the non-dimensionalization of
the experimental quantities. The reference scales for numerical simulations are defined
as the DNS values of the Eulerian velocity integral scale, r.m.s. velocity fluctuations
and eddy turnover time at the time t0 corresponding to the location of the heated
wire (table 1). The time t0 is determined as when the value of the Reynolds number
based on Taylor microscale (Reλ) in numerical simulation matches the experimental
value of Reλ at the location of the heated wire. Knowing the reference scales, the
non-dimensional time in the numerical simulation can be related to the distance from
the heated wire in the experiment:

t′ = t− t0 =
(tref)DNS
(tref)expt

x′

U
. (2.4)

Using (2.4), the numerical times corresponding to the other experimental measurement
points can be found. Various quantities pertaining to the velocity field can now be
directly compared between the experiment and the DNS. The initial parameters of
the velocity field (Re0 and K0) are chosen such that the values of Reλ from numerical
simulation and W84 matched at all the measurement points. The values obtained are
Re0 = 350 and K0 = 1.5. The reference scales for both DNS and experiment are
presented in table 1.

In order to verify that the flow is accurately simulated, the product of the highest
wavenumber and the Kolmogorov length scale, kmaxηK , was calculated. The initial
value of kmaxηK is 1.55 and in the domain of interest (t > t0) 1.28 < kmaxηK < 1.75.
Examination of the velocity energy spectra at different times (not shown here) also
indicates that all wavenumbers are well resolved during the simulation.

In addition to the base velocity field, several other simulations were performed
with values of the initial Reynolds number Re0 between 100 and 350, resulting in
Reλ between 24 and 44 at the moment when the scalar field is initialized. Although
it is difficult to draw conclusions about the high-Reynolds-number behaviour based
on these simulations, they can provide information about the Reynolds number
dependence of some of the quantities presented in the next sections. All the results
presented in the subsequent sections were obtained using the base velocity field, unless
otherwise stated.
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Figure 2. Initial scalar profiles; y = 1–128 represent the grid points.

As mentioned above, the scalar field is initialized with non-zero values in a slab
perpendicular to the y-axis and zero elsewhere. This profile is Fourier transformed
and the wavenumbers higher than kmax are discarded. The initial slab cannot be
represented exactly in terms of a truncated Fourier series, and scalar values outside
the interval [0,1] appear. In order to reduce the magnitude of these values, the initial
scalar profile is obtained after integrating the pure diffusion equation several times.

Several types of initialization have been examined: (1) a rectangular slab with half-
width of 1 grid space slightly smoothed by integrating the pure diffusion equation
once (Run 1); (2) a profile obtained by integrating the pure diffusion equation for the

previous profile several times (Run 2); (3) a Gaussian profile with A ≡ ∫ y2=128

y1=1
Y dy = 2

(Run 3); and (4) a triangular slab with half-width of 0.5 (Run 4). For Runs 1–3, A = 2
and Run 4 has A = 1. The initial scalar profiles for Runs 1 to 4 are presented in figure
2. It can be seen that when the initial scalar profile is smooth (Run 2 and Run 3), the
magnitude of the negative values of Y is very small. During the development time,
when the scalar fluctuations are generated, some of the points with negative values
tend to increase their magnitude. After a short time compared to the duration of the
simulation, turbulent mixing becomes important and the magnitudes of the negative
scalar values decrease significantly. Table 2 presents the magnitudes of the highest
negative value, the numerical time t′ when it was obtained, and the percentage of
points with negative scalar values in the corresponding (x, z)-plane.

The highest negative values were obtained for the run which initializes the scalar
field with a triangular slab, as expected, and the smallest negative values were obtained
for Run 2. Scalar values over 1.0 also appear for Run 1 and for the wider initial scalar
profiles discussed in § 4.2 (Run 5 to Run 8). However, these values rapidly fall below
1.0 as the scalar wake is spreading. At the same time, the numerical oscillations seen
in figure 2 on the initial scalar profiles are no longer present on the mean scalar
profiles (not shown) after only few iterations. Additionally, two-dimensional spectra
of the scalar variance (not shown here) indicate that all the scalar scales are well
resolved. Amongst the initial scalar profiles used, the Gaussian profile has a small
number of points with scalar values outside [0, 1], yet maintaining a thin profile. Also,
this profile is closest to the profiles obtained by experiments. The simulation which
initializes the scalar field with this profile (Run 3), is taken as the base run in the
subsequent sections.
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Run 1 Run 2 Run 3 Run 4

Highest negative value −0.12 −0.025 −0.08 −0.23
t′ 0.24 0.24 0.24 0.09
Points with negative values 6% 1% 4% 25%

Table 2. The highest negative scalar values obtained during different runs.

x/M 52 60 100
t 5.61 6.18 9.09
t/tref 3.12 3.438 5.057
(Reλ)exp 44 43 39
(Reλ)DNS 44 42.6 36.86
(ηK/Lref)exp 0.0261 0.0284 0.0387
(ηK/Lref)DNS 0.0261 0.0283 0.0383
ηKkmax 1.275 1.385 1.87
(L/Lref)exp 1.00 1.06 1.22
(L/Lref)DNS 1.00 1.03 1.12
(τ/tref)exp 1.00 1.16 1.92
(τ/tref)DNS 1.00 1.14 1.80

Table 3. Velocity field parameters for W84 and DNS.

3. Velocity field
The velocity field from W84 was simulated between the location of the heated wire

(x/M = 52) and x/M = 100. However, the scalar field simulation was stopped at
x/M = 90 (t = 8.37), in order to prevent the wake reaching the boundaries.

Knowing the reference scales (table 1), the numerical quantities can be directly
compared to the experimental ones. Numerical values for some parameters of the
velocity field are listed in table 3. There is a good agreement between the W84 and
DNS results.

The energy decay law for 52 < x/M < 90 was calculated to be

u2
rms

U2
= 0.149

(
x

M

)−1.45

, (3.1)

and has a decay exponent close to the 1.4 that was determined in W84 for the decay
law of the longitudinal mean-square velocity fluctuations .

In order to test the influence of the random number generator on the results ob-
tained, the velocity field was initialized using a different seed and a second simulation
was carried out. Following the same procedure as described above, the numerical time
corresponding to the location of the heated wire and the reference scales were cal-
culated. The normalized statistics pertaining to the velocity field are almost identical
for the two runs at corresponding times.

4. Scalar field
4.1. Scalar wake generated by a thin source

The development of the mean scalar wake corresponding to a source size smaller than
the Kolmogorov microscale has three distinct stages: molecular diffusive, turbulent
convective, and turbulent diffusive (e.g. Warhaft 1984; Anand & Pope 1985). The
first stage is characterized by length scales smaller than the Kolmogorov microscale
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Figure 3. Mean scalar profiles at different times for Run 3; y′ = y − 64.5.
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Figure 4. Time evolution of (a) half-width of the scalar wake, and (b) average half-width
of the scalar wake.

and for the value of Reλ considered in this work it is computationally infeasible to
simulate this stage. Neither the W84 experiment nor the DNS extend far enough to
capture the third stage. The second stage is entirely simulated, as well as part of the
transition to the third stage. Using the reference scales one can calculate the length
of the computational domain, 104 mm, and the grid spacing, 0.82 mm. Since both
wires used in W84 have diameters smaller than the grid spacing, the wake cannot
be simulated from the location of the heated wire, but from where it becomes larger
than the grid size. Nevertheless, the simulation of the W84 scalar wake starts at a
dimension of the same order of magnitude as Kolmogorov microscale. When the
scalar wake is smaller than the Kolmogorov microscale, in the molecular diffusive
regime, it is hardly affected by the turbulence field and has little internal structure,
so its history is not important. Thus, the simulation results of the scalar field can be
directly compared to W84. For all the simulations presented in this section, the scalar
field is generated at t∗ = t′/(tref)DNS = 0.027.

In numerical simulations the initial scalar field has no fluctuations and they are
generated during a development time. After this initial development time the mean
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scalar profiles approach a Gaussian shape in agreement with the experimental data
(W84; Stapountzis et al. 1986; Li & Bilger 1996). Figure 3 compares the mean
scalar profiles with the Gaussian curve for Run 3 at different times. The profiles
obtained for the other runs (not shown here) collapse well after the development

time. The integral A =
∫ y2=128

y1=1
Y dy is conserved for all the simulations. The time

evolution of the half-width of the mean scalar profiles, y1/2, is presented in figure
4(a). There is a good agreement between the W84 and DNS results. The turbulent
convective regime extends to x′/M = 8.1 (or t∗ = 0.33) which is the location where
the measurements started to be taken for the thicker wire. At this location, according
to W84, the mean scalar half-width measurements corresponding to the thin and thick
wire should match. In the turbulent convective region, the linear relation determined
experimentally:

y1/2

Lref
= 1.18

u2rms

u1rms

t

tref
, (4.1)

also holds for the numerical points. The initial development region is longest for
Run 2 which starts with the largest half-width of the scalar profile and shortest for
Run 4 which starts with the thinnest half-width of the scalar profile. Runs 1, 3 and 4
have basically the same half-width for the mean scalar wake after the development
region.

The influence of the random number generator seed on the development of the
scalar wake is assessed by using a second velocity field generated with the same
parameters but a different seed (see § 3). It should be pointed out that, since the
reference scales are different for the two simulations, the initial width of the scalar
slab is different. In order to make a meaningful comparison, the profile used for
initializing the scalar field in Run 1 was considered, as it gave a smaller difference in
the actual size of the initial scalar field. For each velocity field, five scalar fields with
the same initial profile, but at different y-locations were considered, resulting in a
total of 10 runs. Different statistics of the scalar wake were calculated and compared
at corresponding times. Averages and confidence intervals based on these statistics
were determined. Figure 4(b) presents the average over the 10 runs of the normalized
half-width of the mean scalar wake. The 90% confidence interval was calculated using
the Student-t distribution with nine degrees of freedom. Throughout the turbulent
convective regime the results are very close for all the runs. As expected, towards the
end of the simulation the dispersion in the results increases among the 10 runs, but
the agreement with the experimental data remains fairly good.

The r.m.s. scalar profiles (not shown here) are initially double peaked, in agreement
with the experiment. After the development time they become single peaked, but the
DNS do not extend far enough to verify the re-emergence of the double peak observed
in W84 far downstream. The time evolution of the half-width of the r.m.s. scalar wake,
yrms1/2 , is presented in figure 5(a). Since the scalar fluctuations are generated first at
the edges of the scalar wake, the initial values of yrms1/2 depend on the details of the
scalar source. After an initial development time, the results obtained for runs 1, 3 and
4 are almost identical and in good agreement with the W84 data. Again, Run 2 has a
longer development time, but yrms1/2 for this run approaches the results for the other
runs later in time. The half-width of the scalar r.m.s. wake was also determined for
the 10 runs described above. The time evolution of the average of yrms1/2 for the 10
runs and its 90% confidence interval are presented in figure 5(b). The results agree
with the experimental data, although they are slightly underpredicted. The dispersion
in the results obtained for the 10 runs remains small even at the end of the simulation.
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Figure 5. Time variation of (a) half-width of the scalar r.m.s. wake, and (b) averaged
half-width of the scalar r.m.s. wake.

The ratio s = Yrms/Y (scalar intensity) at the centreline is shown in figure 6. Since
for our computational grid there is an even number of y-planes, all the statistics
at the centreline are calculated as the average of the statistics in the two central
y-planes (numbered 64 and 65). In W84, s asymptotically approaches a constant
value of 0.7. This is different from the results of Stapountzis et al. (1986) in which
the asymptotic value was 0.5 and the results of Li & Bilger (1996) which suggested
that the asymptotic value should be less than 0.3. Although the numerical simulations
cannot be extended to show the far-field behaviour, the results are in good agreement
with the W84 data for the time range simulated. At the initiation of the scalar field
s = 0, since there are no scalar fluctuations, and it increases as these fluctuations
are produced in the field. The scalar fluctuations are generated initially at the edges
of the scalar wake by the presence of the non-zero mean scalar gradient. Run 2 has
the widest initial scalar profile and, as a result, the smallest mean scalar gradients.
Consequently, the scalar fluctuations are generated at a lower rate and s increases
with the smallest slope. On the other hand, Run 4 has the sharpest initial scalar
profile and the largest mean scalar gradients, which results in the highest growth
rate for s. After reaching a maximum value, s decreases due to the spreading of
the wake. Consequently, the values of s for all runs have a peak which decreases in
magnitude as the initial half-width of the profile increases. At the final stages of the
simulations the value of s is still decreasing and it is smaller for Run 2 than for the
other simulations. This suggests that the shape of the initial scalar profile could have
long lasting influence on the values of s.

After discussing the evolution of the global scalar quantities, the structure of the
scalar wake is examined in order to identify different mechanisms responsible for
the spreading of the wake. Figure 7 shows the scalar PDFs at the centreline for
Run 3. At early times the wake has little internal structure and the scalar is almost
uniform at the centreline, as shown by the PDF at t∗ = 0.03. Later in time, the wake
starts meandering and the double peak in the PDF at t∗ = 0.15 suggests that at
the centreline there are regions of high and low scalar values with relatively little
mixing. An instantaneous view of the scalar wake (figure 8a) clearly shows that the
scalar wake is mainly flapping around the centreline, maintaining its compactness. At
t∗ = 0.23 the PDF is again single peaked, with the peak at very small values of the
scalar. This indicates that at the centreline there are mostly regions with low scalar
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Figure 7. Scalar PDF at the centreline for Run 3.

mass fractions. The peak in the PDF at high scalar values observed at t∗ = 0.15 is
replaced now by a plateau, indicating that regions of intermediate and high scalar
mass fractions are still present at the centreline. Although the wake has more internal
structure, these regions retain the consistency of the wake and the flapping around
the centreline can still be observed in figure 8(b). At later times the shape of the
PDF of Y indicates that the high and low scalar mass fraction values are not well
separated. This suggests that the mixing at the centreline has become significant. At
this stage, the wake is much wider compared to its initial size and has a complex
internal structure (figure 8c). Also, the flapping around the centreline can no longer
be seen. These results agree qualitatively with the experimental results obtained by
Stapountzis et al. (1986).

In order to quantify the contribution of the flapping around the centreline to the
structure of the wake we follow the approach proposed by Anand & Pope (1985).
The scalar variance (Y ′2(y, t)) is written as the sum of the contribution from internal
structure of the wake (Y ′2c ) and the contribution from the flapping around the
centreline (Y ′2flap). This decomposition is possible from the observation that, at very
early times, the scalar wake behaves like a laminar wake convected laterally by the
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y-component of the velocity, v. The most important random variable for the wake
development at early times is, then, the velocity v at the location of the scalar source.
Consequently, the statistical quantities are calculated by conditioning on v0 = v̂, where

v0 = v(y′ = 0, t′ = 0), (4.2)

v̂ is the sample space variable for v and y′ = y − 64.5. By using the conditional mean
(Ỹ ≡ Y |v̂), the scalar fluctuations can be decomposed into two parts:

Y ′ = (Ỹ − Y ) + Y ′′, (4.3)

where Y ′′ ≡ Y − Ỹ denotes the fluctuations about the conditional mean. The scalar
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Figure 9. Time evolution of Y ′2, Y ′2flap and Y ′2c at y∗ = 0 and y∗ = −0.52 for Run 3.

variance can then be expressed as

Y ′2 =

∫ ∞
−∞
g(v̂)(Ỹ − Y )2dv̂︸ ︷︷ ︸

Y ′2flap

+

∫ ∞
−∞
g(v̂)Ỹ ′′2dv̂︸ ︷︷ ︸
Y ′2c

, (4.4)

where g(v̂) is the PDF of v at y′ = 0, t′ = 0 and the conditional variance is Ỹ ′′2 ≡
Y ′′2|v̂. For the numerical calculations, v0 was taken as the velocity v at t∗ = 0.027,
corresponding to the time when the scalar field is initialized, and y∗ = y′/Lref = 0.
Figure 9 shows the time evolution of the scalar variance and its components at y∗ = 0
and y∗ = −0.52. For our computational domain, −3.86 < y∗ < 3.86; y∗ = −0.52
corresponds to y-plane number 56. Initially, the scalar variance and its components
are zero, since the scalar field has no fluctuations. As the scalar fluctuations are
generated in the field the scalar variance increases. After reaching a maximum, Y ′2
starts to decrease, as the wake spreads. At the centreline, most of the contribution
to the scalar variance is from the flapping component at early times. As the wake
develops, this contribution decreases and becomes negligible after the end of the
turbulent convective regime (t∗ > 0.33). Away from the centreline, the time delay
after which the scalar variance starts to increase corresponds to the time it takes the
scalar wake to reach the observation point. Since the wake has already developed
internal structure by the time it reaches y∗ = −0.52, the contribution from the
component associated with the internal structure is dominant at all times at this
location.

It is interesting now to compare the profiles of Y ′2, Y ′2flap and Y ′2c across the wake,
at different times (figure 10). As mentioned before, the scalar variance profile
is double peaked at early times, then it becomes single peaked. The profile of
Y ′2c is single peaked at all times, unlike the profile of the flapping component which
is double peaked at early times (t∗ < 0.33). Initially (not shown here) the flapping
component is dominant at all locations across the wake and becomes less significant
at later times. At t∗ = 0.15 (figure 10a) the two components are equally important
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Figure 10. Profiles of Y ′2, Y ′2flap and Y ′2c for Run 3 at (a) t∗ = 0.15, (b) t∗ = 0.23, (c) t∗ = 1.0.

across the wake. Later, as shown in figure 10(b), Y ′2c becomes more important at all
y-locations across the wake. The relative magnitude of Y ′2flap decreases continuously

compared to Y ′2c in this stage and it becomes negligible in the transition regime
toward the turbulent diffusive regime (figure 10c).

In order to obtain the global contributions of the flapping around the centreline
and internal structure to the scalar variance, the profiles of the scalar variance and
its components are integrated across the wake:

I ≡
∫ y2=128

y1=1

Y ′2dy, (4.5)

Iflap ≡
∫ y2=128

y1=1

Y ′2flapdy, (4.6)

Ic ≡
∫ y2=128

y1=1

Y ′2c dy. (4.7)

Figure 11 shows the time evolution of I , Iflap and Ic for Run 3 and W84. In order
to make a meaningful comparison between the DNS and the experimental results, the
scalar field is normalized by the area under the scalar mean profiles, A. Since in the
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numerical simulation the scalar field is initialized later than in the actual experiment,
there is a difference between the experimental and numerical values of I at early
times. Nonetheless, after the development time the results agree well. As mentioned
before, the development time depends on the details of the scalar source, in particular
on the initial mean scalar gradients. For comparison we also plotted in figure 11 the
time variation of I for Run 1, which is initialized with a sharper scalar profile. In this
case, the numerical results agree with the experimental points even at early times. The
total contribution across the wake of the flapping component to the scalar variance is
large at early times, as expected, and is very small at later times. It appears that, after
the end of the turbulent convective regime, the contribution of the internal structure
to the scalar variance becomes dominant.

In addition to the scalar variance, higher moments of the scalar PDF have also
been examined experimentally. Figure 12 shows the kurtosis versus skewness of the
scalar for Run 3 and the best curve fits through the data of Mole & Jones (1994) and
Li & Bilger (1996). The numerical data suggest the existence of a simple relationship
between K and S . In general the data seem to follow the relation K = aS 2 + b, as
proposed by Mole & Clarke (1995). In order to test the influence of the Reynolds
number on the results, several simulations were carried out at lower Re0 (see § 2.3) and
the scalar initialization used for Run 3. The results change slightly with the Reynolds
number, but no clear trend has been observed for the range of Reynolds numbers
studied.

4.2. Influence of the source size on the development of the scalar wake

In this section the effects of source size on the development of the scalar wake are
studied. The scalar source has diameters ranging from the Kolmogorov microscale
to the integral scale of the turbulence. The large source sizes are difficult to study
experimentally due to the influence of the wire on the velocity field and the vortex
shedding from the wire. Table 4 shows the half-width of the initial scalar slabs for
runs 5–8, and their relative size compared to the ηK and the integral scale. The initial
scalar profiles for runs 5–8 are obtained following the same procedure as for Run
1, but using wider ‘rectangular’ scalar slabs. For all these runs the velocity field is
generated using the same initial conditions as before and the scalar transport equation
is integrated from t′ = 0.
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Run 5 Run 6 Run 7 Run 8

y1/2[grid space] 1 2 4 8
y1/2/ηK 2.33 4.65 9.31 18.61
y1/2/L 0.06 0.12 0.24 0.49

Table 4. Initial scalar slab width.

Figure 13(a) presents the variation of the half-width of the mean scalar wake
for all the source sizes analysed. After the initial development time when the scalar
fluctuations develop in the field, the rate of growth of the half-width of the mean
scalar wake becomes independent of the source size. Also, after the development
time, the mean scalar profiles (not shown here) approach a Gaussian shape. The
half-width of the r.m.s. scalar wake (figure 13b) exhibits a behaviour similar to
that of the half-width of the mean scalar wake. After an initial development time
(whose duration is shorter for the r.m.s. wake) the rate of growth becomes ap-
proximatively independent of the source size. Analysis of the scalar intensity at the
centreline for different source sizes (not shown here) indicates a strong dependence
on the source size for the time range simulated. Similarly to the evolution of s
presented in figure 6, for larger source sizes s has a peak which decreases in mag-
nitude and occurs at later times as the source size increases. This behaviour can
be explained by noticing that the scalar fluctuations at the centreline are generated
earlier for the thinner source sizes. As a result, they will reach the maximum intensity
sooner.

As the initial source size increases, the structure of the scalar wake also changes.
For the largest source size simulated (Run 8), the scalar PDF at the centreline (figure
14) remains single peaked for a longer time than the thin source size results shown
in figure 7. At initial times the scalar wake, which in this case is larger than most of
the turbulent eddies, is primarily affected by the turbulent motion at the edges and
only slightly convected laterally (figure 15a, b). Consequently, at the centreline there
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Figure 13. (a) Time evolution of the half-width of the scalar wake for different source sizes.
(b) Half-width of the r.m.s. scalar wake vs. time for different source sizes.

are mainly regions with high scalar values even at t∗ = 0.23. The effect of the large
eddies begins to be visible later when, as figure 15(c) shows, the wake starts to lose its
compactness. At t∗ = 0.5 (figure 14) the scalar PDF at the centreline is double peaked
with the peaks at very large and very small scalar values. This indicates that at the
centreline there are mainly patches of low and high scalar mass fractions. But, unlike
the smaller source sizes where the double peak in the scalar PDF was associated with
the compact wake flapping around the centreline, in this case the flapping mechanism
is no longer responsible for the appearance of the double peak. Towards the end
of the simulation the scalar PDF becomes single peaked again, with the peak at
small scalar values. But, as the scalar PDF shows, even at the end of the simulation
(t∗ = 1.5), there are still regions on the centreline with high scalar mass fractions
corresponding to little mixing. In order to analyse quantitatively the influence of the
source size on the structure of the scalar wake, the methodology described in § 4.1 can
be extended and the contributions due to flapping and internal structure of the wake
to the scalar variance can be found. All scalar variance profiles obtained (not shown

here) are double peaked at early times and, as expected, Y ′2flap is small compared to

Y ′2c at all times.

4.3. Turbulent transport of the scalar field (DNS and models)

The scalar field is homogeneous in the x- and z-directions and inhomogeneous in the
y-direction. Using the governing equations presented in § 2.2, the transport equations
for different scalar moments can be derived. The relative importance of various terms
in these equations can identify the mechanisms of mixing and transport of the scalar
field by the turbulence.

Figures 16, 17, 21 and 22, presenting the terms in the transport equations discussed
in this section, were obtained from Run 3. All the other runs provide similar results.
In these figures, RHS refers to the sum of the terms on the right-hand side of the
equation, and LHS is the time derivative which is calculated separately. As expected,
the right- and left-hand sides of the transport equations presented in figures 16, 17, 21
and 22 are in good agreement. All the temporal evolutions presented in this section
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start at t∗ = 0.15, corresponding to the location of an W84 experimental point, which
is after the initial development time.

4.3.1. Mean scalar and scalar flux

The equation for the mean scalar is

∂Y

∂t
= − ∂

∂y
(vY ′)︸ ︷︷ ︸
I

+
1

Re0Sc

∂2Y

∂y2︸ ︷︷ ︸
II

, (4.8)

where v = u2 and the averages are taken over the homogeneous directions for each
y-plane.

The first term on the right-hand side of equation (4.8) is the turbulent transport of
the scalar fluctuations, which contributes most to the RHS, and the second term is
molecular diffusion of the mean scalar field. At the centreline (not shown), the RHS
has negative values at all times indicating a continuous decay of the mean scalar after
the development time. However, at y∗ = −0.52 (figure 16a), the scalar mass fraction
is zero at t∗ = 0.15, and the mean scalar values increase as the wake approaches this
location. The time variation of the terms in equation (4.8) at y∗ = −0.52 shows that
the RHS increases from zero at t∗ = 0.15 to a peak value then becomes negative
at later times. The magnitude of the negative values of the RHS are much smaller
than its peak value. This indicates that the mean scalar, after reaching a peak value,
decreases slowly as the wake is spreading.

It is also interesting to examine the terms in the mean scalar equation across
the wake. Figure 16(b) presents the y variation of the terms in equation (4.8) at
t∗ = 0.23, corresponding to an W84 experimental point in the turbulent convec-
tive regime. The diffusion term is small compared to the first term throughout
the width of the wake, as expected in the turbulent convective regime. The turbu-
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Figure 15. Instantaneous scalar wake for Run 8. Scalar profiles obtained at z = 64 and (a) t∗ = 0.15,
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lent transport term is symmetric with respect to the centreline, with positive values
near the outer edges of the wake, and negative values in the central region. The
scalar fluctuations are thus transported from the inner regions of the wake toward
the outer edges. This is the main mechanism responsible for the spreading of the
mean scalar wake. At later times, as the wake develops, the terms in equation
(4.8) fluctuate more across it, but all the features explained above are preserved
(figure 16c).

The most important quantity on the right-hand side of the mean scalar equation is
the derivative of the scalar flux. The scalar flux is also part of the production term in
the scalar variance equation, (4.17) below. The transport equation for the scalar flux
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in the y-direction can be written as

∂(vY ′)
∂t

=− ∂

∂y
(v2Y ′)︸ ︷︷ ︸
I

−v2
∂Y

∂y︸ ︷︷ ︸
II

− 1

ρ0

(
Y ′
∂p

∂y

)
︸ ︷︷ ︸

III

+
∂

∂y

[
1

Re0Sc

(
v
∂Y ′

∂y

)
+

1

Re0

(
Y ′
∂v

∂y

)]
︸ ︷︷ ︸

IV

−
(

1

Re0Sc
+

1

Re0

)(
∂Y ′

∂xj

∂v

∂xj

)
︸ ︷︷ ︸

V

. (4.9)

The terms on the right-hand side of equation (4.9) are (I) turbulent diffusion, (II)
production due to the mean scalar gradient, (III) pressure scrambling, (IV) molecular
diffusion and (V) dissipation, respectively. Due to the symmetry of the problem,
the turbulent scalar flux should be statistically zero on the centreline, with positive
values for y∗ > 0 and negative for y∗ < 0. Figure 17(a) presents the time variation
of the terms in equation (4.9) at y∗ = −0.52. As the wake reaches this point, the
magnitude of vY ′ increases (becomes more negative) as shown by the variation of the
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the terms in the scalar flux equation across the wake at (b) t∗ = 0.23, (c) t∗ = 1.0.

RHS. However, for t∗ > 0.4 the time derivative of the scalar flux becomes positive,
indicating that, after reaching a peak, the scalar flux starts to decay. The turbulent
transport term follows the variation of the RHS, being the most important term at
all times. The production term consists of the product of the mean scalar gradient
and the variance of the velocity v. After reaching a peak value, this term decreases
as the turbulent energy decays and as the mean scalar wake spreads. Figure 17(a)
also shows that terms III, IV and V are small during the simulation. As the wake
reaches y∗ = −0.52, the magnitude of the turbulent scalar flux is increased primarily
by turbulent transport term and the production term (I and II). At later times, when
the scalar flux starts to decay, term I is almost equal to the RHS, while the production
term is balanced by the sum of the pressure-scrambling and dissipation terms (III
and V).

In order to gain a better understanding of how the scalar flux is generated and
transported across the wake, the y-variation of the terms in equation (4.9) is examined
in figure 17(b) at t∗ = 0.23. All the terms are antisymmetric with respect to the
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centreline, consistent with the variation of the scalar flux across the wake. At t∗ = 0.23,
the pressure-scrambling and the molecular terms are small at all y-locations, so the
RHS is given by the balance between the turbulent transport and the production
terms. The y-dependence of the production term is due to the mean scalar gradient,
and it follows the shape of the derivative of a Gaussian curve. It reaches a maximum
value at a certain y-location and decreases to zero at the centreline. The sign of
the turbulent diffusion term is opposite to that of the production term (acts as a
destruction term) for −0.35 < y∗ < 0.35, and redistributes the scalar flux toward the
outer regions of the wake. For |y∗| > 0.35 terms I and II have the same sign, and both
contribute to the increase of the scalar flux magnitude. Near the outer edges of the
wake, the turbulent diffusion term is dominant. This indicates that term I is primarily
responsible for the increase in the scalar flux in these regions. At later times (figure
17c), the pressure-scrambling term becomes comparable with I and II and acts as a
destruction term at all y-locations.

The scalar flux term in the mean scalar equation (4.8) is usually closed by using a
gradient diffusion model (Anand & Pope 1985; Fox 1995):

vY ′ = −Γt ∂Y
∂y

. (4.10)

These models have been developed for the turbulent diffusive regime and it is
known that they do not work well during the early stages of the wake development
(e.g. Anand & Pope 1985). Scatter plots of vY ′ and ∂Y /∂y across the scalar wake at
early times (not shown here) indicate a relatively weak correlation between the two
quantities. But as the mean scalar profile approaches a Gaussian shape the scalar flux
and the mean scalar gradient across the wake become highly correlated. In order to
quantify this, the correlation coefficient between two quantities a and b is defined as

ζ(a, b) ≡ 〈ab〉 − 〈a〉〈b〉
[(〈a2〉 − 〈a〉〈a〉)(〈b2〉 − 〈b〉〈b〉)]1/2

(4.11)

where the averages, denoted by 〈 〉, are taken over the y-direction (across the wake) and
in time. At early times, ζ(vY ′, ∂Y /∂y) = −0.45 and it becomes equal to −0.95 after the
end of the turbulent convective regime (t∗ > 0.33). This correlation remains high even
when the source size is comparable with the integral scale (ζ(vY ′, ∂Y /∂y) = −0.97
for Run 8 and t∗ > 0.33). It should be also noted that, when calculating Γt from
equation (4.10), a singularity occurs whenever the mean scalar gradient is very small
(near the centreline and at the edges of the wake). In order to avoid this, an averaged
Γt, Γtav , has been defined across the wake by integrating the absolute values of the
scalar flux and mean scalar gradient over the y-direction and calculating their ratio
at each time step. The absolute values are needed since the mean scalar gradient and
the scalar flux have opposite signs for y > 0 and y < 0. Figure 18 presents the time
evolution of Γtav obtained for different source sizes. For comparison, the diffusion
coefficient obtained from the k–ε model, Γ ′t ≡ (Cµ/σf)(k

2/ε) (Launder & Spalding
1972) is also plotted in figure 18. The model constants are Cµ = 0.09 and σf = 0.7.
The turbulent kinetic energy, k, and velocity dissipation, ε, are the same for the runs
presented. Unlike Γtav , Γ

′
t decreases continuously during the simulation. Although

there is a good correlation between the scalar flux and the mean scalar gradient, the
k–ε model does not capture well the behaviour of Γtav for the time range simulated.

The model assumption given by equation (4.10) can be relaxed by using the velocity–
scalar joint PDF equation (Anand & Pope 1985). If f(V , Ψ ; x, t) is the probability
density of the joint events U (x, t) = V and Y (x, t) = Ψ , then an exact equation for f
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for the flow under consideration is (Pope 1985)

∂f

∂t
+ V2

∂f

∂y
= − ∂

∂Ψ

(
f

(
1

Re0Sc
∇2Y |V , Ψ

))
− ∂

∂Vi
(f(ai|V , Ψ )), (4.12)

where: Q|V , Ψ is the expectation of the function Q upon the joint events U = V and
Y = Ψ , and ai is the force per unit mass on a fluid particle:

ai = ν
∂2Ui

∂xj∂xj
− 1

ρ

∂p

∂xi
. (4.13)

By integrating equation (4.12), and using stochastic models for the terms ∇2Y and
ai (Pope 1985), a modelled scalar flux equation is obtained:

∂(vY ′)
∂t

+
∂(v2Y ′)
∂y

+ v2
∂(Y )

∂y
− 1

Re0Sc

∂2(vY ′)
∂y2

= −Cm ε
k

(vY ′). (4.14)

By comparing equations (4.14) and (4.9), an expression for Cm can be derived:

Cm =
k

ε

T

vY ′
, (4.15)

where

T =
1

ρ0

(
Y ′
∂p

∂y

)
− ∂

∂y

[
1

Re0Sc

(
v
∂Y ′

∂y

)
+

1

Re0

(
Y ′
∂v

∂y

)]
+

(
1

Re0Sc
+

1

Re0

)(
∂Y ′

∂xj

∂v

∂xj

)
+

1

Re0Sc

∂2(vY ′)
∂y2

. (4.16)

After the initial development time, the scatter plots of T vs. vY ′ε/k in figure 19
indicate a good correlation between the two quantities across the wake for Run 3
(ζ(T , vY ′ε/k) = 0.98). The results for all the other runs are similar. However, T and
vY ′ε/k become less correlated as the value of Re0 decreases (not shown). Figure
20(a) shows the time evolution for Cm at y∗ = −0.52, for different initial source sizes.
During the development of the scalar fluctuations, Cm has large magnitudes due to the
singularity in relation (4.15). But curiously enough, following the turbulent convective
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Figure 19. Scatter plot of T vs. normalized scalar flux across the wake for
t∗ > 0.33 for Run 3; regression line slope = 2.3.

regime, Cm approaches a constant (2 < Cm < 4). It also appears that the source size
does not significantly influence the values of Cm for t∗ > 0.33. Across the wake (figure
20b) away from the centreline and the edges, the values of Cm oscillate between
2 and 4, almost independently of the source size. An average value for Cm across
the wake at each time is calculated by replacing T and vY ′ in equation (4.15) with the
integrals of their absolute values in the y-direction. During the transition from the
turbulent convective to the turbulent diffusive regime, Cmav exhibits small sensitivity
to the source size (figure 20c), and has values between 2 and 2.5. For the lower values
of Re0 examined, the time variations of Cmav are different from those for the higher
Re0 cases, but no clear trend can be observed. To summarize, it appears that the
unconditional PDF method models the scalar flux equation reasonably well after the
end of the turbulent convective regime for the highest Re0 considered. Also, the model
prediction is not significantly affected by the source size.

4.3.2. Scalar variance and dissipation

The transport equation for the scalar variance provides information about the
mechanisms which generate and destroy scalar fluctuations. The scalar variance
equation is

∂(Y ′2/2)

∂t
= − ∂

∂y
(vY ′2/2)︸ ︷︷ ︸

I

−vY ′ ∂Y
∂y︸ ︷︷ ︸

II

+
1

Re0Sc

∂2

∂y2
(Y ′2/2)︸ ︷︷ ︸

III

−εY︸︷︷︸
IV

. (4.17)

The first term on the right-hand side of equation (4.17) is the turbulent transport
of the scalar variance, the second is the production, and the third is the molecular
diffusion of the scalar variance. Term IV is the the scalar dissipation,

εY =
1

Re0Sc

(
∂Y ′

∂xi

∂Y ′

∂xi

)
.

At the centreline (not shown), the RHS is negative at all times. This is expected
after the development time, when the scalar fluctuations decay continuously. Off the
centreline (figure 21a), at y∗ = −0.52, the RHS increases from zero to a maximum
value, as the wake approaches this point, indicating a continuous increase in the
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Figure 20. (a) Time variation of Cm at y∗ = −0.52, (b) y-variation of Cm at t∗ = 1.5,
(c) Time evolution of Cmav .

scalar variance. Later, the RHS becomes negative and, consequently, the scalar
variance starts to decrease. Most of the contribution to the RHS is given at early
times by the turbulent transport term, while the production is balanced by the scalar
dissipation. Thus, the scalar variance increases due to the turbulent transport from
the inner regions of the wake. After the RHS becomes negative (t∗ > 0.4), the
dissipation provides most of the contribution and the production term is balanced
by the turbulent transport term. The molecular diffusion term is small at all times,
indicating that the scalar variance is transported mainly by the turbulence.

Figure 21(b) presents the transversal variation of the terms in equation (4.17) at
t∗ = 0.23. The results agree qualitatively with those of Veeravalli & Warhaft (1990)
and are consistent with the above discussion. At the centre of the wake most of the
contribution to the RHS is given by the scalar dissipation. As we move away from
the centreline, at y∗ = ±0.2 the turbulent transport and the production terms become
significant. This is the region where the scalar variance is produced and transported
to the outer edges of the wake. Farther from the centreline, for |y∗| > 0.25, the RHS
becomes positive, indicating that the scalar variance is increasing. In this region,
the production term is smaller and it is balanced by the dissipation. Most of the
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Figure 21. (a) Time evolution of the terms in scalar variance equation (4.17) for Run 3 at
y∗ = −0.52; the terms in the scalar variance equation across the wake at (b) t∗ = 0.23, (c) t∗ = 1.0.

contribution to the RHS is by the turbulent transport term. At the outer edges of
the wake (|y∗| > 0.5), the most important term in the scalar variance equation is the
turbulent transport term. At later times (figure 21c ), the relative importance of the
production and turbulent transport terms decreases in the central region of the wake
compared to the dissipation term.

The scalar dissipation is an important term in equation (4.17) at all times. In
order to further analyse the small-scale behaviour of the scalar field, as well as the
mechanisms responsible for the destruction of the scalar fluctuations, the equation
for the scalar dissipation is considered:
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(4.18)
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Figure 22. Time evolution of the terms in scalar dissipation equation (4.18) for Run 3 at (a) y∗ = 0.0,
(b) y∗ = −0.52; the terms in the scalar dissipation equation across the wake at (c) t∗ = 0.23,
(d) t∗ = 1.0.

The terms in the above equation are: (I) turbulent transport of the scalar dissipation,
(II) production by turbulent stretching of the scalar gradient, (III) production by
mean scalar gradient, (IV) production by curvature of the mean scalar field, (V)
molecular diffusion and (VI) molecular dissipation. At the centreline (figure 22a) the
time variation of the terms in equation (4.18), after the initial development time,
shows a continuous decay of the scalar dissipation. Terms I, II and VI are the
main contributors to the RHS. Therefore, the production of the scalar dissipation
is primarily due to the stretching of the scalar gradient, while the destruction is
due to the molecular dissipation. Off the centreline (figure 22b) as the wake reaches
y∗ = −0.52, most of the contribution to the RHS is by the turbulent transport term,
while the other terms balance each other. At later times (t∗ > 0.5), terms I, III,
IV and V are less significant and the most important terms are the production by
turbulent stretching of the scalar gradient and the molecular dissipation of the scalar
dissipation.

To further understand the behaviour of the scalar dissipation, the y-variation of the
terms in equation (4.18) is examined. At t∗ = 0.23, terms I, II, and VI are significant.
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The profiles for terms II and VI are single peaked, with the maximum values occurring
on the centreline (figure 22c). The most important mechanism of producing scalar
dissipation in the central region of the wake is the small-scale interaction between
the scalar field and the turbulence (term II). The turbulent transport term is negative
in the central region and becomes positive towards the outer zone of the wake. This
results in a flux of scalar dissipation from the central region of the wake to the outer
edges. Thus, the main reason for the increase in the value of scalar dissipation at
the outer edges is the turbulent transport from the inner regions of the wake. This is
similar to the results obtained for the mean scalar, scalar flux and scalar variance. At
later times (figure 22d), the turbulent transport term is less significant compared to
terms II and VI, except at the outer edges where it becomes important.

The scalar dissipation rate is usually modelled by assuming that the ratio of the
time scale of the turbulent energy dissipation and that of scalar variance dissipation,

CY =
2k/ε

Y ′2/εY
, (4.19)

is constant. The joint PDF equation (4.12) can be integrated by modelling the terms
on the right-hand side, and the scalar variance transport equation can be constructed
(Pope 1985). This equation is identical to the exact equation (4.17), except that the
scalar dissipation is modelled according to equation (4.19). Thus, both the classical
closures and the unconditional PDF method use the same model for the scalar
dissipation. Following the turbulent convective regime, the scalar dissipation and
the scalar variance become highly correlated (ζ(εY , Y ′2ε/2k) = 0.96), although the
relationship between the two quantities is not linear (figure 23). For larger source
sizes, the scatter of the points increases as shown in figure 23, but the correlation
remains high even for the largest source size analysed (ζ(εY , Y ′2ε/2k) = 0.92 for
Run 8). A value of 2 is usually employed for CY (e.g. Anand & Pope 1985), although
there is much evidence that it does not take a universal value (Fox 1997). Overholt &
Pope (1996) found in their stationary turbulence simulations that CY increases with
Reynolds number and suggest that it could be flow dependent. The asymptotic value
of CY should not depend on the source size, but Li & Bilger (1996) suggest that the
distance within which CY approaches the value of 2 could be a function of the source
size.

Figure 24(a) shows the time variation of CY at the centreline for source sizes
ranging from the Kolmogorov microscale to the integral scale. At early times, since
the scalar fluctuations are very small, a singularity is obtained in equation (4.19) and
CY becomes very large. The scalar fluctuations are generated by the presence of the
mean scalar gradient and, as a result, the values of CY are dependent on the source
size at initial times. As the wake develops, the influence of turbulence on the scalar
field structure becomes more and more significant and the values of CY become less
dependent on the source size. Near the end of the simulations CY is still decreasing
and values between 2.55 for the biggest source and 2.74 for the smallest source are
obtained. Similar results are found at y∗ = −0.52 (figure 24b), although it appears
that the values of CY obtained for the larger scalar sources approach an asymptotic
value earlier. Across the wake, the differences between the values of CY for different
source sizes are small at later times (figure 24c). An average value for CY is calculated
by replacing the values of the scalar dissipation and scalar variance in equation (4.19)
with their integrals in the y-direction. The time evolution of CY av , presented in figure
24(d), is consistent with the above discussion. At the end of the simulations, the
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Figure 23. Scatter plot of scalar dissipation vs. normalized scalar variance across the wake for
t∗ > 0.33. Run 3 (open circles), regression line slope = 4.6. For clarity, the values for both εY and

Y ′2ε/(2k) are magnified 3 times. Run 8 (pluses), regression line slope = 2.1.

values of CY av are still decreasing with small differences between the runs. But it
also appears that the curves obtained for larger source sizes approach the asymptotic
value of 2 earlier.

In order to examine the Reynolds number influence on the time evolution and
source size dependence of CY , several simulations were performed at lower Re0 (see
§ 2.3) using the scalar initialization of Runs 5–8. For all the simulations, the scalar
fields are generated at the same numerical time as for the corresponding runs with
Re0 = 350. Figure 25 presents the time evolution of CY av for different values of Re0

and the scalar initialization corresponding to Runs 5 and 8. The evolution of CY av
does not change significantly with Re0, and for all the values of Re0 examined, CY av
approaches the asymptotic value of 2 earlier for larger source sizes.

5. Summary and conclusions
The present study is concerned with the structure and the development of the scalar

wake generated by a single line source in an isotropic decaying turbulent flow. DNS
was used to confirm the Warhaft’s (1984) experimental results for the velocity and the
scalar fields. The numerical and experimental quantities are compared by choosing
the appropriate reference scales for length, time and velocity. The time origin was
selected by determining the time corresponding to the location of the heated wire in
W84. The initial parameters of the velocity field are found by matching the values
of Reλ at all the measurement points. In addition to the base velocity field (which
matched the W84 experiment) several other velocity fields were generated for initial
Reynolds number 100 < Re0 < 350 which resulted in 24 < Reλ < 44 at the location
of the scalar source.

Several initial scalar profiles are examined. The results for the mean and the r.m.s.
scalar wakes are in good agreement with W84. Higher-order moments of the scalar
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PDF have also been calculated. The kurtosis versus skewness of the scalar mass
fraction agrees with the experimental results of Mole & Jones (1994) and Li & Bilger
(1996) and shows small sensitivity to the Reynolds number for the range of Re0

examined.
The influence of the scalar source size on the development of the scalar wake is

studied for source sizes ranging from the Kolmogorov microscale to the integral scale.
After an initial development time, the growth rates of the half-width for the mean
and r.m.s. scalar profiles become independent of the initial source diameter. However,
for the time period simulated, the scalar intensity on the centreline is dependent on
the size and shape of the source.

In order to examine the structure of the scalar wake, the scalar variance is de-
composed into a contribution from the flapping of the wake around the centreline
and a contribution from the internal structure of the wake. For a source size small
compared to the Kolmogorov microscale, during the initial stages of the development
the wake behaves like a laminar wake meandering around the centreline. At early
times, for the smallest source size analysed, most of the contribution to the scalar
variance is from the flapping of the instantaneous wake around the centreline. In the
turbulent convective regime, the wake develops internal structure and, near the end of
this regime, the flapping component becomes negligible. For larger source sizes, the
contribution of the flapping to the development of the scalar wake is less important
at all times.

The structure of the scalar wake is further examined by considering the scalar PDF
at the centreline of the wake. For the smallest source size studied, the scalar PDF is
initially single peaked and becomes double peaked primarily due to the meandering
of the wake. As the flapping of the wake weakens, the PDF becomes single peaked
again. A similar type of evolution for the scalar PDF is also observed for the largest
source size studied. However, for this case it appears that the meandering of the wake
is not responsible for the observed double peak in the scalar PDF.

The development of the scalar wake and the mechanisms which contribute to the
spreading of the wake are studied by examining in detail the evolution of all the terms
in the mean, scalar flux, variance, and scalar dissipation equations. After analysing
the exact scalar equations, two types of closures for the mean and scalar variance
equations are discussed. During the early stages of the development of the wake, the
gradient diffusion and PDF models do not capture the behaviour of the scalar flux
and scalar dissipation. Although the correlation between the scalar flux and the mean
scalar gradient is high during the transition to the turbulent diffusive regime, the value
of Γt calculated from DNS data varies across the wake and in time. The average
value of Γt across the wake increases continuously in time during the simulation,
different from the behaviour predicted by the k–ε model. The model based on the
unconditional PDF method approximates the scalar flux reasonably well during the
transition from the turbulent convective to turbulent diffusive regime for the largest
Re0 examined. The initial size of the scalar source does not significantly influence the
results obtained for the scalar flux.

The scalar dissipation is usually modelled by assuming that its time scale is
proportional to the mechanical dissipation time scale. The same proportionality
relation appears in the model based on the unconditional PDF method. Near the
end of the simulation, the value of CY determined from DNS data is still decreasing,
but it appears to approach the theoretical value of 2 obtained for the turbulent
diffusive regime. The difference in the values calculated for CY for different source
sizes decreases in time and becomes small at the end of the simulation. However, the
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time evolution of the average value of CY across the wake seems to indicate that the
asymptotic value is reached earlier for larger source sizes. The initial value of the
Reynolds number does not significantly influence the evolution of CY for the range
of Reynolds numbers examined.
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Urbana-Champaign, and the Center for Computational Research at State University
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